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Two species involved in a simple, fast reaction tend to become segregated in patches composed of a single
of these reactants. These patches are separated by a boundary where the stoichiometric condition is satisfied
and the reaction occurs, fed by diffusion. Stirred by advection, this boundary and the concentration fields
within the patches may tend to present multiple-scale characteristics. Based on this segregated state, this paper
aims at evaluating the temporal evolutions of the length of the boundary and diffusive flux of reactants across
it, when concentrations presenting initial self-similar fluctuations are advected by a singular vortex. First the
two sources of singularity, i.e., the self-similar initial conditions and the singular vortex, are considered
isolatedly. On the one hand, self-similar initial conditions are imposed to a diffusion-reaction system, for one-
and two-dimensional cases. On the other hand, an imposed singular vortex advects initially on/off concentra-
tion fields, in combination with diffusion and reaction. This problem is addressed analytically, by characteriz-
ing the boundary by a box-counting dimension and the concentration fields by a Hölder exponent, and numeri-
cally, by direct numerical simulations of the advection-diffusion-reaction equations. Second, the way the two
sources hang together shows that, depending on the self-similar properties of the initial concentration fields, the
vortex promotes the chemical activity close to its inner smoothed-out core or close to the outer region where
the boundary starts to spiral. For all the considered situations, the length of the boundary and the global
reaction speed are found to evolve algebraically with time after a short transient and a good agreement is found
between the analytical and numerical scaling laws.
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I. INTRODUCTION

The concentration field c�x , t� of a reactant subjected to
advection, diffusion, and reaction satisfies the equation

�tc = − u · �c + ��2c − v , �1�

where u is the velocity field, � the diffusivity of the reactant,
and v the reaction term, a function of the concentration fields
of the different reactants via the reaction kinetic. Of practical
interest is the global reaction speed, noted V hereinafter, i.e.,
the reaction term integrated over the material domain. Con-
sidering initially nonpremixed reactants, with concentration
fields presenting spatial fluctuations, fast diffusive and ad-
vective transports will mix the reactants before the reaction
noticeably occurs. As far as V is concerned, the behavior of a
perfectly mixed situation is recovered. On the contrary, slow
transport mechanisms, considered in the forthcoming, are ex-
pected to abate the reaction by preventing the reactants to be
set in contact. In this case, the importance of the spatial
fluctuations of concentrations on the yield of the reaction has
been acknowledged in various fields: chemical reactors �see,
for instance, �1–3� and references therein� or atmospheric
flows �where it is believed, for instance, to strongly influence
the mechanisms of stratospheric ozone depletion �4–6��. In
the first two situations, existing laminar or turbulent flows
advecting the species obviously interact with the spatiotem-
poral fluctuations of concentrations.

The present paper is restricted to the case of a reaction
between two reactants A+B→�P, where P stands for prod-
uct of the reaction. It leads to the reaction term v=�ab for a
simple second order reaction, with a and b the concentrations
in A and B and � the kinetic constant of the reaction. Such a
second order, collisional, reaction already presents a basic
mechanism sustaining spatial fluctuations of concentrations
and affecting V. The evolution of the concentrations under
the sole effect of the reaction

dta = − �ab ,

dtb = − �ab , �2�

is governed by the local initial values a0 and b0 of the con-
centrations. For a0�b0, the concentrations asymptotically
decay exponentially �as exp�−��a0−b0�t�� towards the equi-
librium state aeq=a0−min�a0 ,b0� and beq=b0−min�a0 ,b0�.
For a0=b0, the concentrations asymptotically decay algebra-
ically �as t−1� towards the equilibrium state aeq=beq=0. Ini-
tial concentration fields presenting spatial fluctuations evolve
towards the coexistence of patches, where the reactant origi-
nally locally in default is almost completely depleted and the
reactant originally locally in excess remains. These patches
are separated by a boundary, namely the set of points where
the reactants are in their stoichiometric ratio �a=b�. This
boundary will be noted and referred to as B hereinafter. For
one-, two-, and three-dimensional systems, B is, respectively,
a set of disjoint points, curves, and surfaces.

Adding now slow diffusive transport to reaction, the
patches behave as “tanks,” feeding the reaction by diffusion
of reactants towards B. Owing to diffusion, reaction is ex-
pected to mostly occur in a band centered on B. The geom-
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etry and characteristic sizes of the patches of reactants and of
B are governed by the fluctuations of the concentration fields
down to the diffusive scale and are then expected to evolve
with time.

This behavior has long been recognized and studied ana-
lytically and numerically in “discrete” systems of reaction-
diffusion, i.e., where the particles of reactants exhibit a
d-dimensional random walk. Within this framework, random
initial fluctuations of the densities of particles lead to the
breakup of the mean-field theory behind Eq. �2� for d�2 and
to the asymptotic behavior V� t−1−d/4 for d�4, numerically
retrieved by Monte Carlo simulations �7–14�. In the forth-
coming, a “mean-field” approach, where the reactants are
described by concentration fields satisfying Eq. �1�, is
adopted exclusively, as this study focuses on the effect of
fluctuations of these fields eventually advected by fluid
flows. The relation between the “discrete” and “mean-field”
approaches is then beyond the scope of this paper. It should
also be kept in mind that the situations addressed here are
one- and two-dimensional in the sense of three-dimensional
systems presenting two or one invariant direction�s�.

In cases where the Péclet number, i.e., the ratio between
the characteristic times of diffusion and advection in Eq. �1�,
is large, the discrepancy between the size of the system and
the diffusive scale induces high computational costs. Ad-
vected scalars are known to exhibit multiscale characteristics
and continuous spectra in cases of turbulent �15�, chaotic
�16�, and vortical �17� flows. It is then worthwhile to assess
by analytical means, in simple generic cases, the quantitative
effects of multiscale fluctuations of the concentration fields
on V.

The present study aims at evaluating the scaling laws for
V as a function of time for vortices advecting initially fluc-
tuating concentration fields in two-dimensional situations.
Coupling vortical flows and singular concentrations fields is
of dual interest. Owing to the large values of the Schmidt
number � /� usually observed in natural systems, where � is
the kinematic viscosity, the diffusive scale of the velocity
field is larger than the diffusive scale of the concentration
fields. A range of length scales where the variations of the
velocity field are regular whereas the variations of the con-
centration fields are singular �the Batchelor regime� exists. A
vortical flow constitutes an example of regular shear flow
known to generate singularities in an advected scalar field.
These singularities are related to the algebraic decay of the
velocity field with the distance to the center of the vortex.
They affect the large scale diffusive properties �17–22� and,
consequently, the average reaction rate if fast reaction occurs
in the system, as studied analytically �23,24� and observed
experimentally �25�. These vortices can then be conceived of
as an elementary ingredient of turbulent flows �26–28�. On
another scale, large vortices are often encountered in geo-
physical flows, for instance, where these coherent structures
advect fluctuating scalar fields, the singularity of which
stems from the underlying turbulent velocity field. The
Obukhov-Corrsin regime expected in the homogeneous and
isotropic turbulent advection of a passive scalar is then
known to be strongly dependent on large scale shear �29�.

Analytically, the simplest framework to quantify the sin-
gularities of B and of the concentration fields is to assume a

self-similar behavior. The boundary B is characterized by a
box-counting dimension DB, such that the number of squares
of edge � required to cover this set is approximated over a
range of �’s by the scaling law N������ /��−DB, where � is
the integral scale of the set. Moreover, concentration fields
such as their increments scale algebraically as
�c�x+��−c�x��� ���h for small �’s are characterized by the
Hölder exponent h. It is not elaborated much further here on
the spatial- or ensemble-nature of the average �noted with an
overbar�.

Many previous analytical and numerical studies have fo-
cused on chaotic advection, seen as straining flow, coupled
with diffusion for a passive scalar �30–33� or for autocata-
lytic �34,35� or more complex �36� reactions. On experimen-
tal and practical points of view, the case of a simple, colli-
sional reaction, though more rarely tackled analytically in the
presence of a flow, remains the most commonly encountered
�37�. The behavior of diffusing scalars or reactants in strain-
ing flows remains a debated question between local and glo-
bal interpretations �38,39�. As far as shear flows are con-
cerned, their coupling with reaction has been often passed up
as they do not constitute the most effective way to mix.
Besides the interest of shear flows on their own, it should
also be noted that they may be involved in the case of cha-
otic advection in a closed domain, in which surfaces where
the trajectories of the fluid particles are integrable �KAM
surfaces� are possible. The fluid particles remain attracted to
these surfaces and the flow therein is a shear flow, which
tends to govern the asymptotic mixing properties �see, for
instance, �40��. Previous analytical and numerical studies
have also focused on the coupling between a vortex and
flames in premixed combustion, where pockets of unburned
fuel are known to form and slow down the reaction �41,42�.
The collisional reaction does not exhibit such a behavior as it
is explained by the move of the reaction fronts relative to the
fluid and is specific to premixed combustion.

Further assumptions are made throughout this paper. First,
the reactants and the reaction are assumed not to retroact on
the velocity field. Consequently, the velocity field will be
considered as externally imposed. As this paper does not
focus on the dynamics of these vortical structures but on
their kinematic effects on scalar fields, its scope is restricted
to the generic situation of two-dimensional vortices. Then,
the reactants are assumed to present the same diffusivity �.

Introducing the characteristic scales C for concentrations,
L for lengths, and U for velocities, Eq. �1� is nondimension-
alized using the characteristic time of reaction ��C�−1 and
recast in the form

�ta = − �1/Da�u · �a + �1/DaPe��2a − ab ,

�tb = − �1/Da�u · �b + �1/DaPe��2b − ab , �3�

with Da=�CL /U the Damköhler number and Pe=UL /� the
Péclet number. To insist on the nature of rescaled diffusivity
of this latter, D instead of 1/DaPe is used in the forthcoming.

The material is organized as follows: Sec. II is devoted to
diffusion-reaction, with self-similarity governed by the initial
conditions. In Sec. III, the self-similarity in a two-
dimensional advection-diffusion-reaction system stems from
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shear flows in the form of singular vortices acting on regular
concentration fields. Section IV then combines the two
sources of self-similarity. Finally, the results obtained are
discussed in Sec. V.

II. DIFFUSION-REACTION OF INITIALLY
SELF-SIMILAR CONCENTRATION FIELDS

We focus in this part on pure diffusion-reaction, i.e., on
the solutions of

�ta = D�2a − ab ,

�tb = D�2b − ab . �4�

The multiscale behavior of the concentration fields is ob-
tained by prescribing self-similar initial conditions. The basic
mechanisms and results are first introduced for one-
dimensional systems and the validity of their extension to
two-dimensional situations is then established.

A. Orders of magnitude for quantities associated with B

First, two A-rich and B-rich contiguous one-dimensional
patches of characteristic length L and concentration C are
considered. Owing to diffusion, the reaction tends to occur in
a band centered on B. The consumption of the reactants dif-
fusing from the patches towards the band defines the charac-
teristics of the band. In terms of order of magnitude, this
band is characterized by a concentration cB, similar for A and
B, and a width sB, as sketched in Fig. 1�a�. These orders of
magnitude result from two distinct mechanisms. First, as
long as the characteristic diffusive length scale �Dt remains
smaller than the size of the patch L, the balance between
diffusion from the patch and reaction integrated across the
reactive band leads to

D C

�Dt
� cB

2 sB. �5�

Second, within the reactive band, the balance between the
characteristic times of diffusion and chemical reaction leads
to

sB
2

D
�

1

cB
. �6�

Equations �5� and �6� yield

sB � 	D�Dt

C

1/3

�7�

and

cB � 	DC2

�Dt

2/3

. �8�

Equation �8� implies that the characteristic reaction term in
the reactive band scales as

vB = cB
2 � 	DC2

�Dt

4/3

. �9�

These scaling laws are compared with the results of a one-
dimensional numerical simulation of Eq. �4� for on/off con-
centration fields presenting a single boundary point as de-
picted in Fig. 1�a�. Due to its numerical stiffness, Eq. �4� is
solved using the MATLAB partial differential equation solver,
built on a variable order solver. The concentration fields are
discretized on 2048 points. Vanishing Neumann boundary
conditions are applied at x=0 and 1. The time dependencies
of Eqs. �7� and �9� are favorably compared with the results of
the numerical simulation in Figs. 1�b� and 1�c�. It is also seen
in Fig. 1�c� that the reaction speed decreases dramatically
after diffusion has affected the whole rightward patch �t
	10 000�. Indeed, as the characteristic diffusion length scale
�Dt reaches L, the concentration in the patch decays expo-
nentially with characteristic time L2 /D.

The width sB in Eq. �7� increases with time less rapidly
than �Dt while cB in Eq. �8� decreases with time. Thus in the
limit of small D’s �or fast reaction�, the reactive band can be
considered as infinitely thin, reduced to B. Furthermore, the
concentrations of both reactants tend to vanish on B. Finally,
it is also assumed in the forthcoming that the displacement of
B is negligible. Indeed, the displacement of B observed in
the numerical simulation of Fig. 1�d� appears to be negligible
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FIG. 1. One-dimensional numerical integration of Eq. �4� for an
isolated B, with D=10−5. �a� Concentration fields a �—� and b �––�
at t=1000. �b� Numerically obtained temporal evolution of the
width of the boundary �—�, evaluated as the length of the domain
where 0.1
a�x , t� /b�x , t�
10, compared with the expected scaling
law Eq. �7� �––�. �c� Numerically obtained temporal evolution of the
local maximum of the reaction term �—�, compared with the ex-
pected scaling law Eq. �9� �––�. �d� Numerically obtained temporal
evolution of xB, the localization of B.
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before the collapse of the rightward patch. This displacement
stems from the constraint that the diffusive fluxes on both
sides of B have to be equal to satisfy the reaction stoichiom-
etry. This last assumption is rather crude as in the case of
multiscale concentration fields, discrepancies between diffu-
sive fluxes on both side of B can be large for specific real-
izations.

Analytically, the idea is then to consider the solution f
=a−b of �t f =D�2f , together with vanishing boundary con-
ditions on B. The concentration fields a and b are retrieved
as a= f , b=0 for f 	0 and a=0, b= f for f 
0. The global
reaction speed then resumes to the diffusive flux across B:
V=�vdx=D�B��xf �, for a one-dimensional system.

B. One-dimensional self-similar case

A set of alternatively A-rich and B-rich one-dimensional
patches is now considered. The initial set of points B be-
tween these patches is assumed to exhibit a box-counting
dimension DB and the initial concentration fields a0�x� and
b0�x� a common Hölder exponent h. Within a patch, the con-
centration evolves under the action of diffusion and vanishes
at the two consecutive points of B bordering the patch. A
patch collapses when the diffusive length scale reaches its
size. The dominant contributions to V are then due to patches
larger than �Dt. Owing to its self-similarity, the number of
points of B evolves as

NB � ��Dt�−DB. �10�

The diffusive flux of the reactants through a point of B is
then evaluated as follows, assuming that this point is located
at xB=0 for the sake of simplicity. The field f�x , t� vanishing
at xB and diffusing from the initial condition f0�x� evolves as

f�x,t� =
1

��
� 	�

−x/�4Dt




f0�u�4Dt + x�exp�− u2�du

− �
x/�4Dt




f0�u�4Dt − x�exp�− u2�du
 . �11�

For f0�x� presenting a Hölder exponent h and vanishing at
x=0, the statistical average of f at time t reads

�f�x,t�� �
1

��
� 	�

−x/�4Dt




�u�4Dt + x�h exp�− u2�du

− �
x/�4Dt




�u�4Dt − x�h exp�− u2�du
 . �12�

The average of the flux at xB then reads

D��xf�0,t�� �
2D
��

	�
0




�u�4Dt�h−1 exp�− u2�du

� D 2h

��
�	h

2

��4Dt�h−1, �13�

where � is the gamma function. The global reaction speed
then scales algebraically with D and t as

V � D��Dt�h−1−DB. �14�

The validity of Eqs. �10� and �14� is addressed by com-
parison with the results of numerical simulations using the
numerical scheme presented in Sec. II A. As developed in
Appendix A, the self-similar characteristics of the initial con-
centration fields a0�x� and b0�x� are obtained by one-
dimensional fractional Brownian motion realizations f0�x�,
under the form of Eq. �A1�. To retrieve the statistical self-
similar properties of fractional Brownian motion, each case
is ensemble-averaged over 25 realizations.

The prescription of the initial conditions first allows us to
assess the evolution of the system towards the segregation of
the reactants. Two cases are considered. On the one hand, the
reactants are initially set in contact by prescribing the initial
concentrations:

a0�x� = 1 + 2f0�x�/max„�f0�x��… ,

b0�x� = 1 − 2f0�x�/max„�f0�x��… . �15�

Such a case is depicted in Fig. 2 and exhibits the occurrence
of the segregation as the reactant initially locally in default is
depleted. On the other hand, the reactants are initially segre-
gated by prescribing the initial concentrations:

a0�x� = 2 max„f0�x�,0…/�f0�x�� ,

b0�x� = − 2 min„f0�x�,0…/�f0�x�� . �16�

Such a case is depicted in Fig. 3. The segregation of the
reactants and the build up of B are shown in Figs. 2 and 3 to
set in over a similar transient time related to the characteris-
tic reaction time �t�1�. During this transient, the initially
mixed system behaves almost like a perfectly mixed one
whereas the initially segregated one does not react. After the
transient, Fig. 4 allows one to verify that the reaction almost
exclusively occurs on B and that both NB and V evolve simi-
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FIG. 2. One-dimensional numerical integration of Eq. �4� with
D=10−7 and initial conditions given by Eqs. �15� and �A1� with
�=0.3. �a� and �c� concentration fields a �—� and b �––� at t=10
and 1000, respectively. �b� and �d� local reaction speed v=ab �—�
at t=10 and 1000, respectively.

D. MARTINAND AND J. C. VASSILICOS PHYSICAL REVIEW E 75, 036315 �2007�

036315-4



larly with time, irrespective of the initial conditions. Thus the
initial transient is found not to significantly modify the
Hölder exponent h of the concentration fields within the
patches. Initially segregated concentration fields, Eq. �16�,
will be used in the forthcoming. We now focus on the alge-
braic temporal decays of NB and V observed in Fig. 4 after
the transient.

The numerically obtained exponents of the algebraic tem-
poral decays of NB and V, as functions of �, i.e., the index of
the fractional Brownian motion used for the initial condi-
tions, are depicted in Fig. 5. They exhibit a good agreement
with the analytical scaling laws Eqs. �10� and �14�, reex-
pressed substituting DB=1−� and h=�. This agreement de-
teriorates for �→0, as B becomes space-filling, and �→1,
as the number of points of B and the related statistics
dwindle.

Beside the temporal behavior, the scaling laws of Eqs.
�10� and �14� with respect to diffusivity D are also of inter-
est. For a given geometry, it allows one to infer the value of
V at very small values of D, which is numerically expensive
to obtain, from V obtained at, relatively, large values of D.
As checked in Fig. 6, the analytical results are again in good

agreement with the numerical ones. As a matter of fact, no
algebraic temporal decay of NB and V is observed for D
	10−4 and, therefore, the assumptions of fast reaction and
resulting segregated state are no longer valid.

C. Two-dimensional case

The two-dimensional situation is conceived of as an ex-
tension of the one-dimensional case. The boundary B turns
into a set of curves, the “roughness” of which can be quan-
tified by the local curvature radius rc. A patch of reactant can
be seen as a set of inclusions of characteristic sizes rc. For
rc��Dt, the whole corresponding inclusion is under the ef-
fect of diffusion, leading to the exponential collapse of the
inclusion. At time t the local curvature radius of B is then
assumed to be much larger than �Dt. Therefore diffusion is
almost one-dimensional and results of Sec. II A still hold.
The box-counting dimension DB and the diffusive cutoff
length �Dt govern the length of B. This length is approxi-
mated as the number of squares of edge �Dt covering B,
multiplied by this resolution, hence

LB � ��Dt�1−DB. �17�

Moreover, integrating the local diffusive flux Eq. �13� along
B yields the algebraic dependence of V with t and D:
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FIG. 3. Same as Fig. 2, but with initial conditions given by Eqs.
�16� and �A1�.
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V � D��Dt�h−DB. �18�

Numerically, the two-dimensional diffusion-reaction sys-
tem Eq. �4� is solved by a first order forward-time centered-
space scheme on a 512�512 grid. Vanishing Neumann
boundary conditions are imposed on x=0,1 and y=0,1. The
initial conditions are obtained as the two-dimensional exten-
sion of Eq. �16�, with f0�x ,y� an index-� fractional Brownian
motion obtained by Eq. �A1�. The length of B is numerically
evaluated as the number of grid-cells covering the boundary
multiplied by the grid precision �x=1/512. This length is
not precision-dependent as long as the boundary is resolved
and regular at the grid precision, i.e., as long as �x��Dt.
The length of B in the two-dimensional cases alleviates the
necessity of large statistics of the one-dimensional case, the
ensemble average is therefore reduced to four realizations.
Such a numerical simulation and the observed algebraic tem-
poral decays of LB and V are depicted in Fig. 7.

The numerically obtained exponents of these algebraic
temporal decays of LB and V, as functions of �, are depicted
in Fig. 8. They are again in good agreement with the analyti-
cal scaling laws Eqs. �17� and �18�, reexpressed substituting
DB=2−� and h=�.

It should be noted that Eq. �14� is similar, for ��1/2, to
expressions obtained in discrete reaction-subdiffusion sys-
tems, with a subdiffusive process then described by a mean
square displacement 
r2�t��� t2� and notwithstanding the pe-

culiar treatment of the reaction term in the discrete frame-
work required by the subdiffusion operator used in Monte
Carlo numerical simulations �14�. Nevertheless, as said in
Sec. I, the relation between discrete and mean-field ap-
proaches is left beyond the scope of this paper.

III. ADVECTION-DIFFUSION-REACTION
IN A SINGULAR VORTEX

Advection-diffusion-reaction is now considered. The sin-
gularity originates from the advection of the reactants by a
two-dimensional steady vortex. Such a vortex presents an
orthoradial flow in the form

u��r� =
1

Da
r−�, �19�

where 1/Da scales the velocity at r=1. Flows given by Eq.
�19� are easily checked to be shear flows. Without elaborat-
ing much further on the vortex dynamics itself, vortices with
��1 are an interesting generalization of the isolated point
vortex �=1 as the exponent � can take into account modifi-
cations of the strong vortical velocity field due to an embed-
ding weak vorticity in two-dimensional turbulence, as pre-
sented in �17�. Moreover, flows satisfying Eq. �19� with �
�1 are also observed between two porous rotating cylinders
�43� or in trailing vortices behind airfoils �44�.

A. Advection and diffusion of a patch advected by a vortex

The effect of a vortex on a patch of scalar is due to the
combined action of differential orthoradial shear and radial
accumulation of the plies of the spiral generated. Consider-
ing, as sketched in Fig. 9, the advection of a material patch
of initially radial length dl0 and initially orthoradial width
ds0, located at distance r from the center of the vortex, the
differential velocity leads to the stretching of the patch. The
direction of the stretched length of the patch is denoted by l
and the direction of its contracting width by s. The evolution
of the length of the patch is given by
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FIG. 7. Two-dimensional numerical integration of Eq. �4� with
D=10−7 and initial conditions given by Eqs. �16� and �A1�. Snap-
shots for �=0.5 at t=100 of �a� a−b, with A-rich domain in lighter
shades of gray, B-rich domain in darker shades of gray, and B in
white and �b� v=ab, with higher values in darker shades of gray.
Temporal evolutions of LB �c� and V �d� for �=0.75, 0.5, and 0.25
�decreasing according to the arrow� ensemble-averaged over four
realizations and corresponding fits of the algebraic decays �–·–� for
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D. MARTINAND AND J. C. VASSILICOS PHYSICAL REVIEW E 75, 036315 �2007�

036315-6



dl =�1 + 	r
d�

dr

2

dl0 =�1 + 	�� + 1�
t

Da
r−�−1
2

dl0

= �1 + S2dl0, �20�

with strain S=rd� /dr= ��+1�r−�−1t /Da introduced and used
hereinafter for the sake of clarity. The divergence-free veloc-
ity field implies the conservation of the area of the patch
while it is advected. Consequently, its width evolves as

ds = ��1 + S2�−1ds0. �21�

Also on a kinematic point of view, at fixed radius r and time
t, the advection of an initially radial material line by the
vortex generates two plies at a distance

�r =
2�

d�/dr
=

2�

� + 1

Da

t
r�+2. �22�

Considering now that the patch is filled with a passive
scalar, taking diffusion into account can be done using the
analysis introduced by Ranz �45� and used, for instance, by
Meunier and Villermaux �22� in the case �=1. Diffusion
along the l-direction is neglected and the change of variables
�s , t�→ �� ,�� such as

� = t + S2 t

3
,

� = �1 + S2�1/2s �23�

is introduced. This turns the advection-diffusion equation
satisfied by f =a−b, �t f +u ·�f =D�f into a one-dimensional
diffusion equation ��f =D��

2 f .
As V is expected to increase with LB, it is sound to focus

on the part of the region where material lines are noticeably
stretched by the vortex and almost aligned with the shear
direction. The patch presents there a spiraled structure. At
fixed radius r, this is obtained after the characteristic time t
=Dar�+1 / ��+1�. Equivalently, at time t, the spiral is ob-
served within the outer circle Cout of radius

rout = 	�� + 1�
t

Da

1/��+1�

� 	 t

Da

1/��+1�

. �24�

In the spiraled region, S	1 and Eqs. �20�, �21�, and �23�
simplify into

dl = Sdl0, �25�

ds = S−1ds0 �26�

and

� = S2 t

3
,

� = Ss . �27�

Diffusion smooths out the plies of the generated spiral
close to the center of the vortex where they tend to accumu-
late. Perpendicular to the shear, therefore to B in the spiraled
region, the characteristic diffusive length scale �Dt, obtained
in absence of advection, is retrieved. This smoothed-out re-
gion is observed where the distance between two plies, �r
given by Eq. �22�, decreases below �Dt. This occurs within
the inner circle Cin of radius

rin = 	� + 1

�

t

Da
�Dt
1/��+2�

� 	 t

Da
�Dt
1/��+2�

. �28�

For all positive value of �, rout in Eq. �24� grows faster than
rin in Eq. �28�. It must, however, be kept in mind that the
extension of the spiral and its smoothing-out occur simulta-
neously and not sequentially as assumed in �19�.

B. Orders of magnitude for quantities associated with B

Using the change of variables Eq. �27�, the scaling laws
Eqs. �7� and �8�, obtained in absence of advection for, re-
spectively, sB the characteristic width of the reactive band
centered on B and cB the characteristic concentration within
this band, can be extended to this case of advection-
diffusion-reaction along a boundary advected by a vortex.
Dropping from now on the coefficients of order unity and
focusing on the dependence with time and the physical pa-
rameters, it yields, at fixed location r
rout:

sB � S−2/3	D�Dt

C

1/3

�29�

and

cB � S−2/3	DC2

�Dt

2/3

, �30�

with C the characteristic concentration in a patch. Owing to
the S−2/3 factor in Eqs. �29� and �30�, at fixed r and for long
times, the assumptions that the reactive band reduces to B
and that the concentrations of the reactants vanish on B re-
main justified. The displacement of the boundary is now as-
sumed to be due exclusively to the advection by the vortex,
as it would be for a material line.
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FIG. 9. Sketched evolution of a patch advected by a singular
vortex, with increasing times in darker shades of gray.
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C. Patches of initial constant concentrations

The situation where the two reactants A and B are initially
separated in two half-spaces, with, respectively, a0=1 ,b0
=0 and a0=0 ,b0=1 �i.e., presenting a Hölder exponent h
=0� is considered. The boundary B, which initially coincides
with the line between the two half-spaces is advected by the
velocity field Eq. �19�. The generated two-arm spiral within
Cout presents a specific box-counting dimension related to �.
According to �46�, the box-counting dimension of a one-
dimensional cut through the spiral is DBcut= ��+1� / ��+2�.
Owing to the accumulation of its plies around the center of
the vortex, the whole spiral exhibits a box-counting dimen-
sion

DB =
2� + 2

� + 2
, �31�

double of DBcut, as it is retrieved in Appendix B. This result
holds irrespective of the initial position of the material line.
Given the integral scale rout given by Eq. �24� and the self-
similar structure of the expanding spiral, the number of
squares of edge � required to cover the spiral reads

N��� = 	 �

rout

−DB

. �32�

Under the effect of radial diffusion, the length of B is thus
approximated by

LB � �Dt	�Dt

rout

−�2�+2�/��+2�

� ��Dt�−�/��+2�	 t

Da

2/��+2�

.

�33�

Multiplying this length by the diffusive flux D /�Dt
across B, obtained for initial on/off concentration fields,
leads to the algebraic temporal evolution of V in the spiraled
region:

V � D	�Dt

rout

−�2�+2�/��+2�

� D��Dt�−�2�+2�/��+2�	 t

Da

2/��+2�

.

�34�

The validity of Eqs. �33� and �34� is evaluated by com-
parison with the results of the numerical integration of Eq.
�3� by a fourth order Runge-Kutta compact scheme associ-
ated with periodic boundary conditions. The vortex imposed
in the simulation presents a “solid rotation” core to prevent
diverging velocities. Furthermore, in the numerical simula-
tions the vortex and the associated spiral live in the finite-
size domain �−1,1�� �−1,1�. Equations �33� and �34� can be
compared with the numerical results as long as the spiral
does not reach the limit of the domain, i.e., as long as t

Da. In simulations, B intersects the center of the vortex.
Such a numerical simulation and the observed algebraic tem-
poral evolutions of LB and V are depicted in Fig. 10. As seen
in Fig. 11, the results obtained numerically for the exponents
of the temporal scaling laws as functions of � compare very
favorably with the analytical scaling laws Eqs. �33� and �34�,
notwithstanding a noticeable deterioration for small �’s.
Equation �33� implies that the length of the spiraled B gen-

erated by a vortex with �	4 asymptotically tends to de-
crease as more length is removed along the inner plies by
diffusion than generated by the outer extension of the spi-
raled region. Even though numerical simulations have not
been attempted for �	3 due to numerical costs, this result is
compatible with Fig. 10�c�.

IV. INITIALLY SELF-SIMILAR CONCENTRATION
FIELDSADVECTED BY A SINGULAR VORTEX

Self-similarity of the concentration fields and singularity
of the vortex are now combined. Initial concentration fields
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FIG. 10. Numerical integration of Eq. �3� with velocity field Eq.
�19�, D=10−5 and Da=103. Snapshot for �=2 at t=160 of �a� a
−b, with A-rich domain in lighter shades of gray, B-rich domain in
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characterized by a Hölder exponent h0 and a box-counting
dimension of B, DB0

are advected by the velocity field Eq.
�19�. Considering an inclusion of reactant, located on Cr the
circle of radius r, its initial length dl0 and width ds0 �see Fig.
9� evolve according to Eqs. �25� and �26�. Owing to the
radial diffusion of reactants, this inclusion disappears when
its width ds is reduced below �Dt. From Eq. �26�, this in-
volves inclusions of initial width ds0,smoothed-out�S�Dt. At
fixed r and t, the number of times the boundary B intersects
Cr is equal to the number of times B, with a cutoff length
ds0,smoothed-out, initially intersects Cr. This number is ex-
pressed as a function of DB0

� =DB0
−1, the box counting di-

mension of the intersection B�Cr at t=0:

NB�Cr
� r�ds0,smoothed-out�−DB0

� � r�S�Dt�1−DB0. �35�

Diffusion smooths out the reactants, leaving a single—
nonreactive—inclusion, for r
rin with rin given by Eq. �28�.
Using Eq. �25�, between Cr and Cr+dr each of these inclusions
and corresponding boundaries contributes to the length of B
by dl=Sdr. Hence the length of B evolves as

LB � �
rin

rout 	r−�−1 t

Da
�Dt
1−DB0

� r−� t

Da
dr . �36�

Two situations are to be considered. For DB0
	2� / ��+1�,

the temporal evolution of LB is governed by the increase of
the number of boundary points given by Eq. �35�, larger as
Cr→Cout:

LB � ��Dt�1−DB0	 t

Da

2/��+1�

. �37�

For DB0

2� / ��+1�, the temporal evolution of LB is gov-

erned by the accumulation of the plies of B as Cr→Cin:

LB � ��Dt��2−�−DB0
�/��+2�	 t

Da

�4−DB0

�/��+2�

. �38�

The marginal case DB0
=2� / ��+1� leads to

LB � ��Dt�1−DB0	 t

Da

2−DB0

��ln	 t

Da

1/��+1�

− ln	�Dt
t

Da

1/��+2�� . �39�

The global reaction speed is evaluated in a similar fashion
by integrating the diffusive flux along B. Equation �13�, ob-
tained for pure diffusion, is reexpressed using the change of
variable Eq. �27� to take the shear into account, leading to
D��sf�0, t���DSh0��Dt�h0−1. For h0�0, the shear modifies
the diffusive flux. Moreover, in the case of the vortex the
shear varies with r. Hence the global reaction speed can no
longer be straightforwardly obtained by multiplying the
length of B by the average value of the flux, but must be
obtained by integrating this total flux. The global reaction
speed, integrated over the spiraled region, then follows:

V � �
rin

rout 	r−�−1 t

Da

1+h0−DB0

��Dt�1−DB0 � r−� t

Da
dr .

�40�

Hence for DB0
−h0	2� / ��+1�, V is governed by Cout, where

S=1:

V � D��Dt�h0−DB0	 t

Da

2/��+1�

�41�

and for DB0
−h0
2� / ��+1�, V is governed by Cin:

V � D��Dt��4+h0−DB0
�/��+2�−2	 t

Da

�4+h0−DB0

�/��+2�

. �42�

The marginal case DB0
−h0=2� / ��+1� leads to

V � ��Dt�h0−DB0	 t

Da

2+h0−DB0

��ln	 t

Da

1/��+1�

− ln	�Dt
t

Da

1/��+2�� . �43�

The analytical scaling laws Eqs. �37�, �38�, �41�, and �42�
are compared with the results of numerical simulations using
the numerical scheme of Sec. III C, with initial concentration
fields prescribed using fractional Brownian motion as in Sec.
II C. The vortex being a strongly localized structure, retriev-
ing the statistical features of the fractional Brownian motion
requires large statistics, hampered by high computational
costs. The present results were obtained by averaging over
eight realizations for each case. An example of the evolu-
tions of the concentrations and local reaction term is depicted
in Fig. 12 together with the temporal evolutions of LB and V.
The validity of the analytical scaling laws Eqs. �37� and �38�
for LB and Eqs. �41� and �42� for V, reexpressed substituting
DB0

=2−�, and h0=� is checked in Fig. 13. Despite the ob-
vious need for larger statistics they exhibit a good agreement
between numerical simulations and analytical scaling laws.

V. DISCUSSION

Two points tackled in the previous sections are now dis-
cussed in more detail. First, the results obtained in Secs.
II–IV are compared in the light of the temporal evolution of
the global reaction speed V for the different situations. Then,
we will focus on peculiar characteristics inferred from Sec.
IV of initially self-similar concentration fields advected by a
vortex.

A. Global reaction speeds

The comparison is done for a globally stoichiometric sys-
tem. Comparing the different global reaction speeds does not
assess the total yields of the reaction—i.e., the average con-
centrations of products—in the system, as they strongly de-
pend on the transient state. Results on the exponents of the
algebraic temporal evolution of V, obtained for the various
situations addressed in this paper, are summarized in Table I
and are now discussed further.
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With perfectly premixed reactants �case ¬ in Table I�, V
asymptotically exhibits the algebraic decay t−2 due to the
second order reaction. The fluctuations of the concentrations
of the reactants and their advection by an imposed velocity
field tend to deeply modify this temporal evolution for fast
reaction, as the reaction is now diffusion-limited. As a first
consequence of the diffusive nature, due to the finite size of
the domain, an algebraic behavior can only be observed for
t�D−1, where D is the diffusivity, nondimensionalized as
stated in Eq. �3�, i.e., as long as diffusivity does not influence
the whole physical domain.

Without advection, the crudest model of segregation con-
sists of two A-rich and B-rich subdomains of initially con-
stant concentrations, separated by a B keeping a fixed length
�case − in Table I�. The global reaction speed, namely the
diffusive flux integrated along B, asymptotically scales as
�Dt�−1/2.

Still without advection, singular fluctuations of the reac-
tants are handled using this segregated state, in the form of B
presenting a box-counting dimension 2	DB	1 and the
concentrations of a Hölder exponent 1	h	0 �case ® in
Table I�. The algebraic temporal evolution of V Eq. �18� is
then always found to decay more slowly than t−1. The fastest
decay is obtained for DB=2 and h=0. For large values of h,
V may exhibit a temporal growth. Nevertheless this regime is
only inferred and could not be obtained numerically as the
fractional Brownian motion used for the initial conditions
introduces a link between h and DB.

The validity of the segregated state is then extended to
advection-diffusion-reaction in the case of steady vortices,
with the orthoradial velocity scaling as r−�, advecting a
single boundary between two A-rich and B-rich subdomains
of initially constant concentrations �case ¯ in Table I�. For
such a vortex living in a fixed domain, the asymptotic behav-
ior holds as long as t�Da, where Da is the Damköhler num-
ber nondimensionalized as stated in Eq. �3�, i.e., as long as
Cout remains in the finite-size domain. Depending on the
value of �, V in Eq. �34� asymptotically exhibits an algebraic
decrease ��
1� or increase ��	1�. The decay of V is al-
ways found slower than t−1. For the isolated point vortex
case �=1, the growth of the length LB balances the decline
of the diffusive flux and V saturates at a constant value. The
results obtained and depicted in Fig. 10 for B intersecting the
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FIG. 12. Numerical integration of Eq. �3� for velocity field Eq.
�19� with �=1, D=10−5, Da=102 and initial conditions given by
Eqs. �16� and �A1� with �=0.25. Snapshot at t=20 of �a� a−b, with
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�f� ensemble-averaged over eight realizations �—� and correspond-
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TABLE I. Comparison between the exponents of the algebraic
temporal evolution of V for different cases tackled analytically and
numerically and validity domains of the algebraic scaling laws.

Case V’s scaling exponent Validity

¬: Perfectly premixed −2 1� t

−: Fixed subdomains −1/2 1� t�D−1

®: Fractional Brownian
motion

−1
 ¯ 
0 1� t�D−1

¯; Vortex −1
 ¯ 
1/2 1� t�Da

°: Vortex and fractional
Brownian motion

−1
 ¯ 
2 1� t�Da
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center of the vortex still hold for B initially at distance d
from the center. The system then presents a nonreactive core
region of radius d and the algebraic regime will be observed
for t� �d�+2Da/�D�2/3. Finally, it is reminded that Eq. �34�
describes the behavior of V, integrated over the spiraled do-
main, within Cout, and not in the whole domain. Nevertheless,
this spiraled domain being the main contribution to the total
length of B, Eq. �34� can be considered as the global reaction
speed in the whole domain.

Self-similar initial conditions and singularity stemming
from an imposed vortex are now combined �case ° in Table
I�. Considering initial concentration fields characterized by
an initial Hölder exponent h0	0 and B by an initial box-
counting dimension 2	DB0

	1, the algebraic scaling laws
for V Eqs. �41� and �42� are deduced. As for the previous
case, the algebraic scaling law is observed for t�Da. The
global reaction speed is found to follow two possible behav-
iors. For DB0

−h0
2� / ��+1� Eq. �42� holds and the evolu-
tion of V is governed by the inner part of the spiral, where
the folding effect of the vortex is balanced by diffusion. For
DB0

−h0	2� / ��+1�, Eq. �41� holds and the evolution of V
is governed by the extension of the fringe of the spiral over
the initially still domain. Once again, the asymptotic regime
of V is always found to decay more slowly than t−1. Equa-
tions �41� and �42� describe the behavior of V integrated over
the spiraled region and, unlike the previous case, a noticeable
contribution to V integrated over the whole domain is pro-
vided by the outer, unspiraled, region. For this contribution
pertaining to diffusion-reaction systems, no algebraic scaling
law for V integrated over the whole domain should be recov-
ered. Nevertheless, cases with DB0

−h0	2� / ��+1� exhibit a
surprising behavior. Indeed, the length of B, Eq. �37�, can be
recast in the form LB� ��Dt�1−DB0rout

2 , highlighting the fact
that the evolution of this length is governed by the length of
the initial B engulfed in the expanding spiraled region. On
Cout, B is advected without being noticeably stretched and the
growth of LB is accounted for by the growth of the spiraled
region. The corresponding V, given by Eq. �41�, leads to the
average reaction speed in the spiraled region v̄
�D��Dt�h0−DB0, namely the average reaction rate deduced
from Eq. �18� for diffusion-reaction systems and, therefore,
valid in the outer, unspiraled, region. The vortex is then
found to have no effect on the temporal evolution of the
reaction speed integrated over the whole domain. This latter
is solely governed by the initial fluctuations of the concen-
tration fields. This result is obtained in the situation of a
steady, isolated vortex living in a domain of fixed size and
advecting homogeneously self-similar concentration fields.

Compared with the perfectly premixed situation, the mul-
tiscale properties of the fluctuations of concentration slow
down the temporal decay of V by preventing the reactants to
be set in contact. After some critical time, V could hence be
higher for stirred nonpremixed situations than for perfectly
premixed ones.

As a point of comparison, it should be noted that Eq. �18�
with h=0 and Eq. �34� are in agreement with previous results
by Wonhas and Vassilicos �47,48�, establishing in the case of
on/off concentration fields that V�−�t f

2� t−1�t�Dt /��2−DB,
with f =a−b.

B. More discussion and outlook

The combination of the two sources of singularity in Sec.
IV leads to interesting results concerning the reactive and the
underlying mixing properties of the situation. First, no inter-
pretation involving a box-counting dimension, as obtained in
Secs. II and III, could be found to account for the evolution
of LB. This should be related to the different natures of the
singularities: global for the self-similar initial conditions and
localized for the vortical flow.

Then, for the intermediate regime 2� / ��+1�+h0	DB0
	2� / ��+1�, the evolutions of LB and V follow, respectively,
Eqs. �37� and �42�. The area of generation of B, close to Cout,
is found to differ from the area of chemical activity, close to
Cin. This fact calls into question the idea that the global re-
action speed can be evaluated in a practical situation by first
tracking B and then integrating an averaged diffusive flux
along the boundary. This assumption lies behind the crudest
“lamellar models” of reactive patches, where the effect of the
flow on B is introduced by the means of an average stretch-
ing rate �see, for instance, the discussion in �36� and refer-
ences therein�. It should be also noted that for a point-vortex
with �=1, using Brownian motion ��=0.5� for the initial
conditions leads to the marginal—nonalgebraic—expression
Eq. �43� for V, explaining the absence of the corresponding
point in Fig. 13.

Finally, the idea that the proposed approach could mimic
a large scale vortex acting on underlying turbulently ad-
vected concentration fields must be modified. Indeed, it as-
sumes that the transport properties of the reactants are not
dramatically modified by the underlying turbulent flow and
are fairly well captured by an eddy-diffusivity coefficient D.
Furthermore, the concentration fields can hardly be described
by single-valued, stationary DB and h. The extension of such
an approach to spectra of exponents DB, h, and �, in a mul-
tifractal fashion �49�, constitutes an open and interesting
question. Nevertheless, the validation of the analytical results
by comparison with numerical simulations would require a
tremendous amount of computation.
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APPENDIX A: PRESCRIPTION OF SELF-SIMILAR
INITIAL CONDITIONS IN THE NUMERICAL

SIMULATIONS

Self-similarity is introduced in numerical simulations of
Secs. II and IV by implementing fractional Brownian motion
�50� to prescribe the initial concentration fields. This Gauss-
ian process is such that for every x and �, the increment
f�x+��− f�x� has a normal distribution with zero mean and
variance ���2�. 0
�
1 is an arbitrary index. This process
presents a strong self-similarity. First the moments of the
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increments of such sample functions exhibiting the scaling
law �f�x+��− f�x��q� ����q, the process presents a Hölder ex-
ponent h=�. Second, the box-counting dimension of the
level-sets f�x�=const is directly related to � by DB=d−�,
where d is the Euclidean dimension of x.

On a practical point of view, fractional Brownian motion
is approximated by randomized Weierstrass functions in the
form

f�x� = �
k=1

N

Ck�
−�k sin�2��kQkx + �k� , �A1�

with independent random variables Ck, Qk, and �k present-
ing, respectively, normal distribution of zero mean and vari-
ance one, uniform distribution on the unit circle, and uniform
distribution on �0,2��. In the forthcoming � is set to 1.08
and N to 150. Functions defined by Eq. �A1� mimic the sta-
tistical properties of fractional Brownian motion for ���’s
small compared with the size of the system and above the
characteristic cutoff length lc��−N. As seen in Fig. 14�b�,
the box-counting procedure requires a large statistics to cap-
ture the self-similar behavior in the fractal range, squeezed

between the under-resolved �large �’s� and regular domains
�small �’s�.

APPENDIX B: DIRECT EVALUATION OF THE BOX-
COUNTING DIMENSION OF SINGULAR VORTICES

Considering an initially straight line intersecting the cen-
ter of the vortex, the length of the generated spiral is ap-
proximated:

L = �
rin

rout 2�r

�r
dr �

t

Da
�	 t�Dt

Da

−�/��+2�

− 	 t

Da

−�/��+1�� ,

�B1�

with �r, rin, and rout given, respectively, by Eqs. �22�, �24�,
and �28�. For t
Da−2/��−1�D��+1�/��−1�, this length resumes to

LB � ��Dt�−�/��+2�	 t

Da

2/��+2�

, �B2�

highlighting the self-similar nature of the spiral with DB
= ��+1� / ��+2�, a cutoff length �Dt, and an integral scale
rout. The value of DB as a function of � can be checked in
Fig. 15.

�1� J. J. Ou and W. E. Ranz, Chem. Eng. Sci. 38, 1005 �1983�.
�2� F. J. Muzzio and J. M. Ottino, Phys. Rev. A 42, 5873 �1990�.
�3� M. Lindberg and Å. C. Rasmuson, Chem. Eng. Sci. 54, 483

�1999�.
�4� S. Edouard, B. Legras, F. Lefevre, and R. Eymard, Nature

�London� 384, 444 �1996�.
�5� D. G. H. Tan, P. H. Haynes, A. R. MacKenzie, and J. A. Pyle,

J. Geophys. Res., �Atmos.� 103 �D1�, 1585 �1998�.
�6� A. Wonhas and J. C. Vassilicos, J. Geophys. Res., �Atmos.�

108 �D11�, 4325 �2003�.
�7� D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 �1983�.
�8� R. Reigada, F. Sagués, I. M. Sokolov, J. M. Sancho, and A.

Blumen, Phys. Rev. E 53, 3167 �1996�.
�9� K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 �1984�.

�10� P. Argyrakis and R. Kopelman, Phys. Rev. A 41, 2121 �1990�.
�11� F. Leyvraz and S. Redner, Phys. Rev. Lett. 66, 2168 �1991�.
�12� G. Zumofen, J. Klafter, and A. Blumen, Phys. Rev. A 44, 8390

�1991�.
�13� F. Leyvraz and S. Redner, Phys. Rev. A 46, 3132 �1992�.
�14� S. B. Yuste, L. Acedo, and K. Lindenberg, Phys. Rev. E 69,

036126 �2004�.
�15� H. Tennekes and J. L. Lumley, A First Course in Turbulence

�MIT, Cambridge, MA, 1972�.
�16� R. T. Pierrehumbert, Chaos 10, 61 �2000�.

0 0.5 1
0

0.5

1

−4 −2 0
0

2

4

6
(a) (b)

x

y

log10 (N (ε))

log10 (ε)

FIG. 14. �a�: Realization of two-dimensional fractional Brown-
ian motion by Eq. �A1�, with �=0.6, �=1.08 and N=150. The
white curve is the zero-crossing set. �b�: Evolution of N��� the
number of squares required to cover this zero-crossing set, as a
function of the length of their edge � �—�, ensemble-averaged over
16 realizations of �a� and compared with the analytical scaling law
��−1 �– –�.

−3 −2 −1 0
0

1

2

3

4

0 1 2 3
0.8

1.3

1.8
(a)

log10 (ε)

log10 (Nε)

�
�

��

(b)

increasing
β’s

β

DB

FIG. 15. �a� Number N��� of squares of size � required to cover
the spiral generated by a material line advected by a vortex, as a
function of �, for � ranging from 0.5 to 3 by 0.5 steps �increasing
according to the arrow�. �b� Comparison between analytical expres-
sion Eq. �31� �—� and numerical results ��� for the box-counting
dimension DB, the numerical exponents are obtained from �a�.

D. MARTINAND AND J. C. VASSILICOS PHYSICAL REVIEW E 75, 036315 �2007�

036315-12



�17� A. D. Gilbert, J. Fluid Mech. 193, 475 �1988�.
�18� P. B. Rhines and W. R. Young, J. Fluid Mech. 133, 133 �1983�.
�19� P. Flohr and J. C. Vassilicos, J. Fluid Mech. 348, 295 �1997�.
�20� A. P. Bassom and A. D. Gilbert, J. Fluid Mech. 371, 109

�1998�.
�21� A. P. Bassom and A. D. Gilbert, J. Fluid Mech. 398, 245

�1999�.
�22� P. Meunier and E. Villermaux, J. Fluid Mech. 476, 213 �2003�.
�23� T. S. Lundgren, Chem. Eng. Sci. 40, 1641 �1985�.
�24� F. E. Marble, in Mixing, Diffusion and Chemical Reaction of

Liquids in a Vortex Field, edited by M. Moreau and P. Turq
�Plenum, New York, 1988�.

�25� B. M. Cetegen and N. Mohamad, J. Fluid Mech. 249, 391
�1993�.

�26� T. S. Lundgren, Phys. Fluids 25, 2193 �1982�.
�27� H. K. Moffat, S. Kida, and K. Ohkitani, J. Fluid Mech. 259,

241 �1994�.
�28� J. Jiménez, H. K. Moffat, and C. Vasco, J. Fluid Mech. 313,

209 �1996�.
�29� A. Celani, M. Cencini, M. Vergassola, E. Villermaux, and D.

Vincenzi, J. Fluid Mech. 523, 99 �2005�.
�30� R. T. Pierrehumbert, Chaos, Solitons Fractals 4, 1111 �1994�.
�31� V. Toussaint, P. Carrière, and F. Raynal, Phys. Fluids 7, 2587

�1995�.
�32� J. T. M. Antonsen, Z. Fan, E. Ott, and E. Garcia-Lopez, Phys.

Fluids 8, 3094 �1996�.
�33� E. Balkovsky and A. Fouxon, Phys. Rev. E 60, 4164 �1999�.
�34� Z. Neufeld, C. López, E. Hernández-Garciá, and T. Tél, Phys.

Rev. E 61, 3857 �2000�.
�35� G. Károlyi and T. Tél, Phys. Rev. Lett. 95, 264501 �2005�.
�36� S. M. Cox, Physica D 199, 369 �2004�.
�37� P. E. Arratia and J. P. Gollub, Phys. Rev. Lett. 96, 024501

�2006�.
�38� J. Sukhatme and R. T. Pierrehumbert, Phys. Rev. E 66, 056302

�2002�.
�39� D. R. Fereday and P. H. Haynes, Phys. Fluids 16, 4359 �2004�.
�40� J. C. Vassilicos, Philos. Trans. R. Soc. London, Ser. A 360,

2819 �2002�.
�41� H. Chaté and S. R. Cant, Combust. Flame 74, 1 �1988�.
�42� J. C. Vassilicos and N. Nikiforakis, Combust. Flame 109, 293

�1997�.
�43� H. J. Lugt, Vortex Flow in Nature and Technology �Wiley, New

York, 1983�.
�44� P. Saffman, Vortex Dynamics �Cambridge University, Cam-

bridge, England, 1992�.
�45� W. E. Ranz, AIChE J. 25, 41 �1979�.
�46� J. C. Vassilicos and J. C. R. Hunt, Proc. R. Soc. London, Ser. A

435, 505 �1991�.
�47� A. Wonhas and J. C. Vassilicos, J. Fluid Mech. 442, 359

�2001�.
�48� A. Wonhas and J. C. Vassilicos, Phys. Rev. E 66, 051205

�2002�.
�49� J. C. Vassilicos, in Topological Aspects of the Dynamics of

Fluids and Plasmas �Kluwer, Dordrecht, 1992�, pp. 427–442.
�50� K. Falconer, Fractal Geometry �Wiley, New York, 2003�.

FAST CHEMICAL REACTION AND MULTIPLE-SCALE… PHYSICAL REVIEW E 75, 036315 �2007�

036315-13


